| UCG<br>Univerzitet Crne Gore | UNIVERZITET CRNE GORE<br>ELEKTROTEHNIČKI FAKULTET |
|------------------------------|---------------------------------------------------|
| STUDIJSKI PROGRAM:           | SPECIJALISTIČKE STUDIJE - ELEKTRONIKA             |
| PREDMET:                     | PROJEKTOVANJE DIGITALNIH SISTEMA                  |
| FOND ČASOVA:                 | 3+0+1                                             |

# LABORATORIJSKA VJEŽBA

| NAZIV:                                                                             | TOK DIZAJNA U XILINX RAZVOJNOM OKRUŽENJU                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CILJEVI VJEŽE<br>- upoznav<br>- poveziva<br>- praktičn<br>- identifik<br>- upoznav | BE:<br>ranje sa FPGA platformom SPARTAN-3E i PicoBlaze 8-bitnim mikrokontrolerom,<br>anje teorijske osnove (predavanja) sa praktičnom realizacijom,<br>o upoznavanje sa tokom dizajna sistema baziranog na FPGA,<br>racija karakteristika SPARTAN-3E razvojne platforme,<br>ranje sa Xilinx ISE razvojnim okruženjem. |
| POTREBAN P                                                                         | RIBOR:                                                                                                                                                                                                                                                                                                                |
| - pribor za                                                                        | a pisanje.                                                                                                                                                                                                                                                                                                            |

IME I PREZIME: \_\_\_\_\_\_.

BROJ INDEKSA: \_\_\_\_\_\_.

| BROJ POENA: |  |
|-------------|--|
| OVJERAVA:   |  |
| DATUM:      |  |

## 1. APARATURA

Na raspolaganju su sljedeći softver i hardver razvijeni od strane Xilinx-a:

- Xilinx ISE v.10.1 razvojno okruženje
- SPARTAN-3E Starter Kit razvojna platforma

# 2. TEORIJSKA OSNOVA LABORATORIJSKE VJEŽBE

Napomena: Kao referenca za *button* u aplikaciji koristi se oznaka '<...>'. Na primjer: <OK> označava klik na OK *button*.

Potrebna dokumentacija o PicoBlaze 8-bitnom mikrokontroleru, kako bi se upoznali sa njegovom arhitekturom i setom instrukcija, nalazi se u .pdf fajlu KCPSM3\_Manual.pdf. U ovoj vježbi se upotrebljava **PicoBlaze** mikrokontroler prilikom ilustracije toka dizajna u ISE razvojnom okruženju.

Za početak treba pokrenuti ISE Project Navigator i napraviti novi projekat.

#### 1.Start→Programs→Xilinx ISE Design Suite10.1→Project Navigator

2.U dobijenom treba izabrati **File→New Project** 

Otvoriće se New Project Wizard (slika 1).

| Mew Project Wizard - Create New Project             |                         | x     |
|-----------------------------------------------------|-------------------------|-------|
| Enter a name and location for the project           |                         |       |
| Project name:                                       | Project location        |       |
| Tok_Lab                                             | C:\User\Desktop\Tok_Lab |       |
|                                                     |                         |       |
| Select the type of top-level source for the project |                         |       |
| Top-level source type:                              |                         |       |
| HDL                                                 |                         | -     |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
|                                                     |                         |       |
| More Info                                           | < Back Next > C         | ancel |
|                                                     |                         |       |

Slika 1: Prozor New Project Wizard

Proizvoljnim imenom nazvati novi projekat, a zatim odrediti mjesto na hard disku gdje želite da vaš projekat i njegovi prateći fajlovi budu sačuvani (...)=Browse.

### 3.<**Next>**

Pojaviće se prozor prikazan na slici 2.

| Property Name                  | Value                        |   |  |  |
|--------------------------------|------------------------------|---|--|--|
| Product Category               | All                          | - |  |  |
| Family                         | Spartan 3E                   |   |  |  |
| Device                         | XC3S500E                     |   |  |  |
| Package                        | FG320                        |   |  |  |
| Speed                          | -4                           | - |  |  |
| Top-Level Source Type          | HDL                          | - |  |  |
| Synthesis Tool                 | XST (VHDL/Verilog)           |   |  |  |
| Simulator                      | ISE Simulator (VHDL/Verilog) |   |  |  |
| Preferred Language             | Verilog                      |   |  |  |
| Enable Enhanced Design Summary |                              |   |  |  |
| Enable Message Filtering       |                              |   |  |  |
| Display Incremental Messages   |                              |   |  |  |

Slika 2: Prozor Device Properties

Pojaviće se dijalog za odabir uređaja i toka dizajna i treba odabrati sledeća podešavanja:

Device Family: **Spartan3E** Device: **xc3s500E** Package: **fg320** Speed Grade: -4 Synthesis Tool: **XST (VHDL/Verilog)** Simulator: **ISE Simulator** Preferred Language: **Verilog** 

#### 4.<**Next>**

Pojaviće se Create New Source prozor (slika 3).

Napomena: ako se koristi ISE 14.1 onda će se umjesto prozora na slici 3 pojaviti prozor sa pregledom izabranih opcija koji se zatvara sa **<Finish>**. Da bi se nastavilo sa kreiranjem novih fajlova unutar projekta iz menija se bira opcija **Project→New Source**.Nakon toga se prati čarobnjak koji vodi kroz proces kreiranja fajla.

U ovom prozoru može se napraviti novi *HDL* izvorni fajl u kome će biti definisano ime modula i portovi. Za ovu vježbu i projekat napravljeni su svi fajlovi, tako da se **ovaj korak preskače**.

| 📧 New P    | Project Wizard - Create New S    | Source                              | ×                                            |
|------------|----------------------------------|-------------------------------------|----------------------------------------------|
| Create     | a new source                     |                                     |                                              |
| 1          | Source File                      | Туре                                | New Source                                   |
|            |                                  |                                     |                                              |
|            |                                  |                                     |                                              |
| Creating   | a new source to add to the oroie | rt is ontional. Only one new source | e can be created with the New Project Wizard |
| Additiona  | I sources can be created and ad  | ded to the project by using the "F  | Project->New Source" command.                |
| Existing s | ources can be added on the ne    | t page.                             |                                              |
| More I     | nfo                              |                                     | Back Next > Cancel                           |

Slika 3: Prozor Create New Source

### 5.<**Next>**

Pojaviće se sledeći prozor (slika 4) gdje se učitava već postojeći Verilog fajl \*.v .

|   | Source File | C | opy to Project | Add Source |
|---|-------------|---|----------------|------------|
| 1 |             |   |                | Demour     |
|   |             |   |                | Remove     |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |
|   |             |   |                |            |

Slika 4: Prozor Add Existing Source

Dosadašnji postupak je univerzalan i potrebno ga je sprovesti za svaki naredni projekat.

# 3. ZADACI LABORATORIJSKE VJEŽBE

Ovom laboratorijskom vježbom obuhvaćena su četiri glavna koraka: pravljenje novog projekta, dodavanje fajlova koji su potrebni za dizajn projekta, simuliranje dizajna i na kraju implementiranje dizajna. U prethodnom poglavlju je već napravljen novi projekat, tako da slijede preostala tri koraka.

## \*Dodavanje fajlova za projekat

- **Project**→**Add Source** i nađite putanju do foldera u kome se nalaze fajlovi **kcpsm3\_int\_test.v** i **kcpsm3.v**
- U folderu je potrebno označiti fajlove kcpsm3\_int\_test.v i kcpsm3.v i otvoriti ih sa <Open>.
- **<Next>**, ako je sve čekirano (slika 5), **<OK>**.

| kcpsm3     Synthesis/Imp + Simulation       kcpsm3_int_test.v     V       kcpsm3_int_test     Synthesis/Imp + Simulation | Design Unit         | Association                |
|--------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| kcpsm3_int_test.v V kcpsm3_int_test Synthesis/Imp + Simulation                                                           | V kopsma.v          | Synthesis/Imp + Simulation |
| 💟 kcpsm3_int_test Synthesis/Imp + Simulation                                                                             | 🕗 kopsm3_int_test.v |                            |
|                                                                                                                          | 🛛 🔽 kopsm3_int_test | Synthesis/Imp + Simulation |
|                                                                                                                          |                     |                            |
|                                                                                                                          |                     |                            |
|                                                                                                                          |                     |                            |
|                                                                                                                          |                     |                            |
|                                                                                                                          |                     |                            |

Slika 5: Prozor Adding Source Files

• **<OK>** da se prihvate *default* podešavanja.

Napomena: U hijerarhiji dizajna biće vidljiv modul zvan int\_test sa crvenim znakom pitanja. Ovaj modul je BlockRAM memorija koja bi trebalo da sadrži program za **PicoBlaze** mikrokontroler koji će biti dodat kasnije.

### Kreiranje programa i završetak dizajna:

Primjer programa (koji se nalazi u fajlu sa ekstenzijom PSM) sa nazivom **init\_test.psm** dolazi uz **PicoBlaze** mikrokontroler. Ovaj fajl će biti iskorišćen kako bi se napravio ROM sa programom koji će biti integrisan u **PicoBlaze** mikrokontroler. Pored njega, potrebni su još i asembler za **PicoBlaze** (KCPSM3.exe) kao i tri *template* fajla (ROM\_form.coe, ROM\_form.v i ROM\_form.vhd).

- Treba otvoriti fajl **int\_test.psm** pomoću tekst editora i pregledati kod uzimajući kao referencu *PicoBlaze* 8-*bit embedded microcontroller user guide* ili *KCPSM3 manual*.
- Sledeći korak je otvaranje komandnog prozora: **Start**→**Programs**→**Accessories**→**Command Prompt**
- U **Command Prompt**-u potrebno je navesti putanju do foldera u kome se nalaze gornji fajlovi (KCPSM3.exe, init\_test.psm, ROM\_form.coe, ROM\_form.v i ROM\_form.vhd), što je u primjeru prikazanom na slici 6 folder *Assembler*.



Slika 6: Command Prompt

• Za generisanje programskih ROM fajlova unosi se sledeća komanda:

>kcpsm3 int\_test.psm

*Napomena*: Trebalo bi da u istom folderu vidite više fajlova koji počinju sa int\_test\*, uključujući i Verilog programski ROM fajl (INT\_TEST.v).

Napomena 2: Program KCPSM3.exe ne radi pod 64-bitnim Windows-ima.

- U ISE Project Navigator-u, pratite korake Project→Add Copy of Source i potrebno je navesti putanju do upravo kreiranog verilog fajla pod nazivom INT\_TEST.v.
- **<Open>** $\rightarrow$ **<OK>** kako bi **INT\_TEST.v** fajl bio dodat projektu.

Na slici 7 je prikazan hijerarhijski niz ovog dizajna.



### Slika 7: Hijerarhija tekućeg dizajna

**Napomena**: Fajl najvišeg nivoa **kcpsm3\_int\_test.v** sadrži instancu **INT\_TEST.v** programskog ROM fajla. Poslije dodavanja ovog fajla dizajnu, crveni upitnik nestaje.

## \*Simulacija Dizajna

Kako bi dizajn bio provjeren potrebno je dodati *stimulus* fajl, pod nazivom *testbench.v*. Pokretanjem *behavioral* simulacije koristeći se **Xilinx iSIM simulator-om** dobiće se rezultati simulacije.

- **Project**  $\rightarrow$  **Add Copy of Source** i izabrati verilog fajl *testbench.v*
- <Open>
- Izabrati Simulation only i <OK> da bi stimulus fajl bio dodat dizajnu, kao što se može vidjeti na slici 8. (Kod ISE 14.1 izabrati za *association* ili *All* ili *Simulation*, pa u dizajn prozoru izabrati *radio-button Simulation* i u padajućem meniju *Behavioral*.)



Slika 8: Hijerarhija tekućeg dizajna sa testbench.v

- U prozoru **Processes for Source** proširiti ISE/ISim simulator, pa nakon desnog klika na **Simulate Behavioral Model** izabrati **Properties**.
- Unijeti vrijednost 10000 za vrijeme simulacije pa **<OK>** (slika 9).

| ategory                  |                                    |                              |
|--------------------------|------------------------------------|------------------------------|
| ISE Simulator Properties | ISE Simulat                        | or Properties                |
|                          | Property Name                      | Value                        |
|                          | Use Custom Simulation Command File |                              |
|                          | Custom Simulation Command File     |                              |
|                          | Run for Specified Time             |                              |
|                          | Simulation Run Time                | 10000 ns                     |
|                          | <u>P</u> roperty displa            | ay level: Standard 💌 📃efault |

Slika 9: Prozor Process Properties

• Dvostrukim klikom na Simulate Behavioral Model u prozoru Processes simulacija će biti pokrenuta.

Nakon završetka simulacije otvoriće se 2 prozora. Jedan će prikazati rezultate simulacije u talasnim oblicima (slika 10), dok će drugi predstavljati stimulus u Verilog formatu.

| _  |                                             |              |                      |             |                     |            |           |                 |               |              |
|----|---------------------------------------------|--------------|----------------------|-------------|---------------------|------------|-----------|-----------------|---------------|--------------|
| 9  | os\courses\v81_fpga                         | a_flow\      | labsolutions\vhdl\la | ab1\Flow_La | b\Flow_Lab.ise - [S | imulation] |           |                 |               |              |
| :t | Sim <u>u</u> lation <u>W</u> indow <u>H</u> | <u>H</u> elp |                      |             |                     |            |           |                 |               |              |
| -  | 戦 戦 🔊 🖻 🔺                                   | N? 8 (       | 🌾 🖻 🚺 🛤 🕷            | 🖄 😿         | ✓ # <sup>1</sup>    | 2802 8     | 1 # # * ^ | / P 🖓 🗶 🗶 🖸     | ıı 🦕 🕨 🚺 1000 | 💙 ns         |
|    | Now:<br>10000 ns                            | 470          | 0 ns                 |             | 2000                |            | 4000 ns   |                 | 6000          | 170          |
| I  |                                             | 170          | (8'X 170             | <u>X 85</u> | <u> </u>            | <u> </u>   | <u>X</u>  | 85 <u>x</u> 170 | <u>X 85 X</u> | <u>170 X</u> |
| I  |                                             | 3            | <u>8000 X</u>        | X           | 2                   |            | _^        |                 |               | 3            |
| I  | Oll interrubt_eve                           | U            |                      |             |                     |            |           |                 |               |              |
| I  | <mark> N</mark> cik                         | 1            |                      |             |                     |            |           |                 |               |              |
|    |                                             |              |                      |             |                     |            |           |                 |               |              |

Slika 10: Rezultat simulacije u talasnom obliku

- Da bi utvrdili da li je dizajn uspješno prošao simulaciju, potrebno je izvršiti detaljan pregled dobijenih rezultata.
- Nakon toga treba zatvoriti prozore koji su se otvorili po završetku simulacije. Pomoću dugmeta **<Yes>** potvrđujemo da zaista želimo izaći iz simulatora.

## \*Implementacija Dizajna

U kartici Sources iz padajućeg menija Sources for potrebno je izabrati Implementation, nakon čega se bira dizajn fajl najvišeg nivoa (top-level) *kcpsm3\_int\_test.v*, kao što je prikazano na slici 11. (Kod ISE 14.1 u dizajn prozoru izabrati *radio-button* Implementation.)

| Sources                                   |                           | × |  |  |  |  |  |
|-------------------------------------------|---------------------------|---|--|--|--|--|--|
| Sources for:                              | Synthesis/Implementation  | ~ |  |  |  |  |  |
| Flow_                                     | Lab                       |   |  |  |  |  |  |
| 🖃 🛄 xc3s200-4ft256                        |                           |   |  |  |  |  |  |
| 😑 🔽 💑 kopsm3_int_test (kopsm3_int_test.v) |                           |   |  |  |  |  |  |
| - V processor - kcpsm3 (kcpsm3.v)         |                           |   |  |  |  |  |  |
| 🔤 💟 program - int_test (INT_TEST.V)       |                           |   |  |  |  |  |  |
|                                           |                           |   |  |  |  |  |  |
|                                           |                           |   |  |  |  |  |  |
|                                           |                           |   |  |  |  |  |  |
|                                           |                           |   |  |  |  |  |  |
|                                           |                           |   |  |  |  |  |  |
| <                                         |                           | > |  |  |  |  |  |
| 🔤 🕻 Source:                               | s 📸 Snapshots 👘 Libraries |   |  |  |  |  |  |

Slika 11: Prozor Sources for Implementation

• U prozoru Processes for Source dva puta kliknuti na Implement Design (slika 12).

Treba obratiti pažnju da će se prije same implementacije izvršiti svi potrebni procesi neophodni za implementaciju. U ovom slučaju pokrenuće se sinteza (*Synthesize - XST*).



Slika 12: Proces Implement Design

• Tokom izvršavanja procesa implementacije može se pratiti napredak kroz pojedinačne korake, proširenjem liste koraka klikom na '+' koji se nalazi sa lijeve strane stavke **Implement Design**.

Nakon svakog završenog koraka pojaviće se sa njegove lijeve strane neka od sljedećih oznaka:

- zeleni "štrik" za uspješno odrađen korak,
- žuti znak uzvika ukoliko je bilo upozorenja,
- crveno 'X' ukoliko je bilo grešaka.

U ovom konkretnom dizajnu se može desiti da se pojave znaci upozorenja za neke korake. Ovdje ih možemo ignorisati.

• Kada se faza implementacije završi, detalji implementiranog dizajna se mogu pogledati u prozoru **Design Summary** (slika 13).

| FLOW_LAB Project Status |                 |                |                          |  |  |  |
|-------------------------|-----------------|----------------|--------------------------|--|--|--|
| Project File:           | Flow_Lab.ise    | Current State: | Placed and Routed        |  |  |  |
| Module Name:            | kcpsm3_int_test | • Errors:      | No Errors                |  |  |  |
| Target Device:          | xc3s500e-4fg320 | • Warnings:    | 346 Warnings             |  |  |  |
| Product Version:        | ISE, 8.1.03i    | • Updated:     | Mon May 15 09:43:08 2006 |  |  |  |

| Device Utilization Summary                     |        |           |             |         |  |  |  |  |  |
|------------------------------------------------|--------|-----------|-------------|---------|--|--|--|--|--|
| Logic Utilization                              | Used   | Available | Utilization | Note(s) |  |  |  |  |  |
| Number of Slice Flip Flops                     | 76     | 9,312     | 1%          |         |  |  |  |  |  |
| Number of 4 input LUTs                         | 107    | 9,312     | 1%          |         |  |  |  |  |  |
| Logic Distribution                             |        |           |             |         |  |  |  |  |  |
| Number of occupied Slices                      | 99     | 4,656     | 2%          |         |  |  |  |  |  |
| Number of Slices containing only related logic | 99     | 99        | 100%        |         |  |  |  |  |  |
| Number of Slices containing unrelated logic    | 0      | 99        | 0%          |         |  |  |  |  |  |
| Total Number 4 input LUTs                      | 177    | 9,312     | 1%          |         |  |  |  |  |  |
| Number used as logic                           | 107    |           |             |         |  |  |  |  |  |
| Number used as a route-thru                    | 2      |           |             |         |  |  |  |  |  |
| Number used for Dual Port RAMs                 | 16     |           |             |         |  |  |  |  |  |
| Number used for 32x1 RAMs                      | 52     |           |             |         |  |  |  |  |  |
| Number of bonded <u>IOBs</u>                   | 18     | 232       | 7%          |         |  |  |  |  |  |
| IOB Flip Flops                                 | 16     |           |             |         |  |  |  |  |  |
| Number of Block RAMs                           | 1      | 20        | 5%          |         |  |  |  |  |  |
| Number of GCLKs                                | 1      | 24        | 4%          |         |  |  |  |  |  |
| Total equivalent gate count for design         | 74,954 |           |             |         |  |  |  |  |  |
| Additional JTAG gate count for IOBs            | 864    |           |             |         |  |  |  |  |  |

| Performance Summary |                               |              |               |  |  |  |  |
|---------------------|-------------------------------|--------------|---------------|--|--|--|--|
| Final Timing Score: | 0                             | Pinout Data: | Pinout Report |  |  |  |  |
| Routing Results:    | All Signals Completely Routed | Clock Data:  | Clock Report  |  |  |  |  |
| Timing Constraints: | All Constraints Met           |              |               |  |  |  |  |

| Detailed Reports       |         |                          |        |                     |                |  |  |  |
|------------------------|---------|--------------------------|--------|---------------------|----------------|--|--|--|
| Report Name            | Status  | Generated                | Errors | Warnings            | Infos          |  |  |  |
| Synthesis Report       | Current | Mon May 15 09:42:22 2006 | 0      | <u>345 Warnings</u> | 0              |  |  |  |
| Translation Report     | Current | Mon May 15 09:42:28 2006 | 0      | <u>1 Warning</u>    | 0              |  |  |  |
| Map Report             | Current | Mon May 15 09:42:38 2006 | 0      | 0                   | <u>2 Infos</u> |  |  |  |
| Place and Route Report | Current | Mon May 15 09:43:01 2006 | 0      | 0                   | <u>2 Infos</u> |  |  |  |

Slika 13: Prozor Design Summary

# 4. ZAKLJUČAK